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Abstract 

A fan effect experiment where participants perform recall and 

recognition tasks on a study set of sentences with three 

content words was conducted. The aggregate results confirm 

a fan effect (Anderson, 1974).  A model of the recall and 

recognition tasks was created using Dynamically Structured 

Holographic memory (DSHM).  A comparison to the human 

data is presented. A discussion of the current resonance based 

mechanisms in DSHM for generating recognition accuracy 

and reaction time data is presented.  This is contrasted with a 

previously employed retrieval based mechanism. 

Keywords: cognitive modeling; the fan effect; holographic 

reduced representation. 

Introduction 

The purpose of this paper is to report the results of a fan 

effect style experiment and to demonstrate that these results 

can be captured by Dynamically Structured Holographic 

memory (DSHM).  The experiment conducted was similar 

to the classic fan effect paradigm (Anderson, 1974).   

In Anderson’s original experiment, participants studied a 

set of sentences that contained two content words: a person 

and a place (e.g., “the hippie is in the park”).  Each content 

word appeared in one, two, or three different sentences.  The 

number of sentences in which a word appears is the fan of 

that word.  Each sentence is assigned a fan, which is the 

sum of the fans of the content words in the sentence.  For 

example, if ‘hippie’ appeared in three sentences while ‘park’ 

appeared in one sentence, ‘hippie’ would have a fan of 

three, ‘park’ would have a fan of one, and the sentence ‘the 

hippie is in the park’ would have a fan of four.  The results 

of a recognition task performed on the sentences (and an 

equal number of foils) demonstrated that the time required 

to affirm or reject a sentence as a member of the study set 

was correlated with the fan of the sentence. 

The present work extends prior research on the fan effect, 

and models thereof.  We explore the generality of the fan 

effect by examining memory performance for sentences 

with three content terms rather than just two (e.g., 

Anderson, 1974).  Additionally, our sentences had a wider 

range of fans than have typically been studied (or modeled).   

The Three Term Fan Experiment 

Method 

Twenty seven participants (12 males and 15 females: mean 

age 20.0 years, SD = 2.2) were recruited from introductory 

psychology courses a Carleton University to take part in the 

experiment.  Participants received course credit for their 

time.  Participants took part in the experiment one at a time.  

The experiment was divided into three main phases: A study 

phase, a recall phase and a recognition phase.   

In the study phase each participant was assigned one of 

three unique sets of study sentences and was instructed to 

memorize the sentences in the list.  Once the participant 

indicated that he or she was prepared to proceed, the recall 

portion of the experiment began. 

The study set consisted of sixteen sentences of the form, 

“The color thing is in the place”.  The color term was one of 

ten colors; the thing was one of ten house-hold items; and 

the place was one of ten locations in/around a typical home.  

Very typical item/locations combinations, such as 

‘comb’/‘bathroom’, were omitted when generating the study 

set sentences. Eight terms from each category appeared in 

one study sentence each, while two terms from each 

category appeared in four sentences each.  No two terms 

appeared together in more than one sentence.  For example, 

if “The orange comb is in the garage” was a member of the 

study set, no other sentence in the study set described an 

orange comb, a different colored comb in the garage, or any 

other orange object in the garage.  However, these 

combinations could occur in foil sentences.  

The fan of a sentence is the sum of the fans of the terms 

in the sentence.  Thus, the four possible sentence fans were:

211



3, 6 9, and 12.  The fan effect predicts that judgments for 

sentences with higher fans should take longer (i.e., have 

higher reaction times) than for sentences with lower fans.  

Additionally, the truth of sentences with a higher fan should 

be recognized with less accuracy than sentences with a 

lower fan.   

Recall Task Method 

Each participant engaged in three iterations of the recall 

task.  Each iteration began with the participant trading the 

study sentences list with the experimenter for a new list of 

sentences identical to the study set, but with one term from 

each sentence replaced with a blank, and the order of the 

sentences randomized.  The participant’s task was to 

correctly fill-in each of the blanks with the missing word.  

The participant was given as much time as he or she needed 

to do so.  The experimenter then recorded the number of 

correct responses and for each error, provided the correct 

missing word to the participant.  The participant was then 

given the opportunity to review the study set again. The 

three iterations were balanced such that each term from each 

sentence in the study set was replaced with a blank exactly 

once. After the third iteration the recognition phase began. 

Recognition Task Method 

The recognition task was conducted on a computer using the 

Experiment Builder software package from SR Research.

Sentences were presented one at a time, centered on a 17” 

CRT monitor (in black font on a white background). 

Participants judged whether each presented sentence was a 

member of the study set, or not. To respond, participants hit 

either the z-key or the /-key, respectively. Accuracy and 

reaction time were recorded for each trial. After each trial, 

the screen blanked for 1 second, and then the word 

“READY” appeared for 1 second to prepare the participant 

for the next trial. 

The participant was presented with 96 test sentences, 

which consisted of three exposures to each of the study set 

sentences, and 48 foil sentences which were not from the 

study set.  Participants were told that they should consider 

sentences from the study set to be true, while all others 

should be considered false.  Each false sentence was 

generated by replacing one of the three terms from a true 

sentence with another term from the same category (e.g., 

color, thing, or place) and with the same fan. For example, 

for a true sentence like “The blue hat is in the garage”, one 

false counterpart might be “The green hat is in the garage”.  

Each true sentence was used to generate three different false 

sentences.  Thus, for each exposure of a true sentence there 

was a corresponding false test sentence with the identical 

fan. 

Results 

The data from one participant was excluded from the 

analysis below.  This participant’s recognition reaction time 

was significantly longer than all the other participants by a 

large margin (P < .001).  The results below reflect the data 

collected from the remaining 26 participants. 

Human Recall Performance 

Performance in the recall task improved, on average, with 

each of three iterations.  Table 1 presents the mean number 

of correct responses (out of 16), the standard deviation, and 

the accuracy measured as a percentage for each of the three 

iterations of the recall phase. 

Table 1: Recall accuracy 

Iteration

1 2 3

Correct (/16) 10.9 13.4 14.6

SD 3.7 3.1 1.8

Percentage 68.1 83.8 91.4

This result is important because an intended purpose of the 

recall task was to confirm that the participants had 

memorized the study set before entering the recognition 

phase.  By the end of the third iteration the participants were 

correctly completing the sentences 91.4 percent of the time. 

Human Recognition Performance 

Overall, participants’ accuracy and reaction time results 

were consistent with the fan effect.  For both true and false 

sentences, accuracy was negatively correlated with sentence 

fan.  Also, accuracy was poorer for false sentences than for 

true sentences for all sentence fans (ps < .05). 

Table 2: Recognition accuracy (%) 

Accuracy

Sentence 

fan True False

3 97.5 95.5

6 95.1 91.7

9 92.1 86.3

12 82.7 77.6

Reaction time increased with sentence fan (p < .001) for 

both true and false sentences, and true sentences were 

judged more quickly than false ones (p = .001).   

Table 3: Recognition reaction time (ms/char) 

True False

Sentence 

fan

Reaction 

time SD

Reaction 

time SD

3 59.0 18.5 64.1 19.9

6 63.6 20.0 69.3 22.6

9 74.2 21.8 86.2 31.1

12 91.3 31.5 102.5 43.6
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Table 3 shows the reaction times (ms/char) for both true 

correct (i.e., the test sentence was true and was judged 

correctly) and false correct sentences of each fan.  

Figure 1: Recognition reaction time by sentence fan 

(ms/char) with confidence intervals 

Figure 1 shows the mean reaction times, measured in 

ms/character, for both true correct and false correct

sentences, for each sentence fan with confidence intervals. 

There was no interaction of truth and fan (p = .199).  Table 

4 presents the pairwise comparisons across fan using the 

Bonferonni adjustment. 

Table 4: Pairwise comparisons for correct reaction times 

Sentence fans P (one-tail)

3 versus 6 0.129

6 versus 9 < 0.001

9 versus 12 < 0.001

In Summary 

The results of the experiment confirm the fan effect as a 

robust phenomenon that generalizes from sentences with 

two content terms (Anderson, 1974) to sentences with three 

content terms (present research).  Future work will examine 

whether statistically significant differences can be found in 

the relative contributions of the terms to the fan effect (e.g., 

does the color term contribute differently than the thing or 

place terms). 

DSHM 

The memory modeling system used to model the described 

experiment was Dynamically Structured Holographic 

Memory (DSHM) (Rutledge-Taylor & West, 2008). DSHM 

is based on the BEAGLE model of the lexicon (Jones & 

Mewhort, 2007).  The details of the DSHM architecture and 

the similarities between BEAGLE and DSHM can be found 

elsewhere (Rutledge-Taylor & West, 2007).   

For an account of the use of DSHM to model the classic 

fan effect, and a comparison to ACT-R (Anderson & 

Lebiere, 1998), see Rutledge-Taylor and West (2008).  For 

those unfamiliar with DSHM, a brief introduction follows. 

DSHM makes use of holographic reduced representations 

(HRR) to encode knowledge in memory.  See Plate (1995) 

for a discussion of the sort of HRRs used by DSHM (and 

BEAGLE). A DSHM system is composed of a collection of 

items that are represented internally as two vectors of 

numbers: i) the environmental vector is static and uniquely 

identifies the item in the system; ii) the memory vector is 

dynamic and encodes all of the associations an item 

develops with other items.  The lengths of these vectors are 

fixed for an instance of DSHM, but can be initially set to 

any positive integer which is a power of 2. 

DSHM takes collections of items as input (called complex 

items; collections of items are items themselves).  The 

structure of a complex item can be expressed using left and 

right brackets. For example the sentence “The red hat is in 

the garage” can be expressed [red:hat:garage].  The system 

can also allow items to have a hierarchical structure.  Here, 

the context tags used to classify an item as background 

knowledge (false) versus experimental knowledge (true) 

applies to the sentence as a whole, and so is up a level in the 

hierarchy, expressed: [true [red:hat:garage]].  Items can bear 

ordered (delimited by colons) or unordered (delimited by 

spaces) relationships with one another.

Information is extracted from DSHM by presenting it 

with incomplete complex items. For example, a query for 

the color of an item might be expressed [true 

[?x:hat:garage].  Any missing items are called query items 

and in DSHSM syntax are always preceded with a question 

mark, (e.g., “?x”).  A query item is like a variable that 

DSHM is tasked with resolving.  DSHM makes use of 

information stored in the memory vectors of the provided 

items to generate a rank ordered list of candidate items for 

replacing the query item. Each candidate completion is 

accompanied by a numerical value ranging from 0.0 to 1.0 

that indicates the strength of the completion.  This strength 

is referred to as the confidence (i.e., how confident DSHM 

is in the completion being correct, or appropriate).  It can 

also be thought of a context relative activation value, to use 

an ACT-R term. 

A DSHM model is constructed by making choices about 

how information is represented in complex items, what 

vector size should be used, what training regime is used, and 

what sorts of queries are presented to the system. 

The Model 

Twenty-seven simulated participants were run (to 

correspond to the 27 human participants).  It was found that 

a range of vector lengths allowed the simulated participants 

to produce reasonable recognition accuracy and reaction 

time results.  However, fitting the recall data was more of a

challenge.  Uniformly using a vector length of 64 produced 

significantly poorer performance than the average for the 

human participants, while a vector length of 128 produced 

significantly better results.  No value in between is possible 

(vector length must be powers of 2). In order to produce 

good average scores, nine of the simulated participants were 

given memory systems that made use of vector lengths of 

64, while the other 18 used vector lengths of 128. 
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Study Phase 

Prior to learning the study set, each simulated participant 

read 1026 background knowledge sentences, each encoded 

as a flat ordered list of three content terms associated with a 

tag ‘false’; “[false [color:thing:place]]”.  The false sentences 

included either one or two of the content terms appearing in 

the study set.  The remaining one or two terms were 

nonsense terms that did not occur in the study set sentences.  

The background knowledge was needed in order to give the 

simulated participants some basis for making errors.  

Without background knowledge there is nothing for DSHM 

to confuse the study set sentences with; DSHM does not 

make use of explicitly added noise.

The simulated participants read each sentence in the study 

set once or twice (to account for the differences in how well 

the human participants prepared themselves for the first 

task) prior to beginning the recall phase.  Sentences from the 

study set were associated with a context tag representing 

‘true’; “[true [color:thing:place]]”.

Recall Performance of the Model 

Like the human participants, the simulated participants 

produced responses to fill-in the blank questions in the 

recall phase. For example, “The _____ hat is in the garage” 

was submitted to the DSHM participant as “[true 

[?x:hat:garage]]”.  The system outputs a list of candidate 

responses, in rank order. The one with the highest rank was 

considered to be the simulated participant’s response.  If the 

system’s response item matched the correct missing term, 

the trial was scored as correct. 

After each iteration the DSHM participant read each of 

the study set sentences once for every three incorrect 

responses on the previous iteration.  The majority of human 

participants took the opportunity to review the study set, 

even after scoring perfectly on the previous iteration.  Thus, 

the DSHM participants re-read the study set a minimum of 

once between trials. 

Table 5: Model recall accuracy 

Iteration

1 2 3

Correct 11.1 14.1 14.1

SD 3.2 2.1 1.9

Percentage 69.4 88.2 88.2

Table 5 presents the recall accuracy for the simulated 

participants.  Although, the accuracy plateaus after the 2
nd

iteration, there is an overall good match for accuracy and 

standard deviation, as demonstrated in figure 2 (only the 

standard deviations for the human data are shown). 

Recognition Performance of the Model 

The simulated participants were each tested on the same 96 

test sentences as the human participants.  In order to 

produce a truth judgment the simulated participant was 

presented with a query of the form “[?x 

[color:thing:place]]”.  If the system produced ‘true’ as its 

highest ranked completion candidate, the simulated 

participant was considered to have judged the sentence to be 

true, otherwise, the simulated participant was considered to 

have judged the sentence to be false. 

Figure 2: Recall accuracy (out of 16) 

To determine the reaction time for the response, the 

model evaluated the degree to which the test sentence as a 

whole (without a context tag) (“[color:thing:place]”), 

resonated within the system.  The sentence’s resonance is 

produced by a built-in DSHM method, which essentially 

determines how closely associated the terms in the sentence 

are to one another. Here, the resonance value is interpreted 

as indicating how familiar the sentence seems to the 

simulated participant.  Thus, if the sentence is judged to be 

true, a high resonance should make this decision easier.  If it 

is lower, it should make the decision harder.  The opposite 

is the case for judgments of false.  It should be difficult to 

reject a sentence that seems familiar, and vice-versa.

The formula used for translating resonance to reaction 

time was RT = 32 / R, where R is the value provided by the 

memory system of the simulated participant, and RT is 

reaction time measured in ms per character.  For true 

sentences R is the resonance value for the sentence.  For 

false sentences, R is the resonance value for the sentence 

subtracted from an upper limit on resonance values.  This 

upper limit was estimated to be the maximum resonance 

value calculated for any of the true sentences (0.64). Table 

6 presents the reaction time data for the model.

Table 6: Model reaction time (ms/char) 

Reaction Time

Sentence 

fan True False

3 61.1 67.4

6 69.0 69.5

9 79.6 77.1

12 87.8 94.5

Figure 3 presents a comparison of the human and model 
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data for correct trials. The solid lines correspond to the 

human data; the dashed lines correspond to the model data; 

the light lines correspond to the true data; and the dark lines 

correspond to the false data. 

Figure 3: Recognition reaction time 

In terms of judgment accuracy, the model outperformed 

the human participants. The simulated participants had a 

judgment accuracy of 100% for true sentences and 98.5% 

for false sentences. It is possible that this discrepancy may 

be due to the relatively small body of ‘interfering’ 

background knowledge in the simulated participants relative 

to real human participants.   

In Summary 

In general the model results provide a good match to the 

human data, in that 1) the false sentences take longer, on 

average, to affirm or deny than do true sentences (77.1 

ms/char versus 74.4 ms/char); 2) a fan effect is observed for 

both true sentences and false sentences; 3) the model 

provided a good fit to recall performance as well as 

recognition performance; and 4) the formula used to convert 

raw model output to reaction time values is simple and 

provides a good fit to the recognition times using a single 

scaling parameter. 

On-Going Work: Effect Of How Fan Is

Distributed? 

Part of the motivation for this experiment and model 

construction was to investigate whether each content word 

in a sentence contributes equally to the difficulty in 

recognizing a sentence as true (i.e., a member of study set).  

It was hypothesized that the color term may make a smaller 

contribution to the fan effect than the thing or the place.  

This is because the color terms are adjectives and more 

ubiquitous than the things or places, which are nouns.  

However, whether the thing or the place should carry more 

weight was not predicted given conflicting intuitions about 

why one or the other should be more influential.  For 

example, the thing term might be the most influential 

because an object’s type (e.g., hat) is a more intrinsic 

property than its location (or color).  Alternately, place 

might be more influential: Grammatically, the color and 

thing share a common noun phrase, while the place does not 

share its prepositional phrase with any other content word. 

The human data were not clear cut with regard to the 

influence how fan was distributed among content terms.  By

fan distribution, we are referring to the possible pattern of 

the fans of the words making up sentences with a particular 

fan.  There are three different ways to make fan 6 sentences 

(color term fan = 1, thing = 1, place = 4; 1,4,1; 4,1,1), and 

three ways fan 9 sentences (1,4,4; 4,1,4; 4,4,1), while there 

is only one way to make fan 3 sentences (1,1,1) and one 

way to make fan 12 sentences (4,4,4).   

No significant effects of fan distribution were found 

among fan 6 sentences.  But, among sentences with a fan of 

9, an ANOVA with revealed that fan distribution did have 

an impact on RT (p =.002).  Specifically, RT was faster

when either the thing or place was unique (i.e., fan 1) and 

slower when the color was unique.  Put another way, when 

trying to judge whether a sentence is true (e.g., “The red hat 

is in the garage”), knowledge of other objects with the same 

color (red ball) adds less difficulty than knowledge of other 

items of the same type (hat) or other items in the same place 

(garage).  Further, RTs tended to be faster when the thing 

type was unique rather than the location, though this trend 

did not reach significance.   

Note: a simple variation in the representation of sentences 

in DSHM would be able to account for this effect because 

DSHM is capable of representing facts that have 

hierarchical structure.  In fact, DSHM already leverages this 

capability in the current model.  In the representation “[true 

[color:thing:place]]”, the three term sentence as a whole 

aggregate is the hierarchical sibling of the context tag 

(‘true’). In order to represent sentences where the thing term 

is dominant, the color and place need only be embedded in a 

list of peripheral properties as in the following 

representation: “[true [thing:[color:place]]”.

Exploratory simulations confirm that using this type of 

representation predicts differences in reaction times among 

fan 9 sentences, where the thing fan dominates the fans of 

the other two terms.  Similarly, for sentences with an overall 

fan of six and a thing fan of four are significantly slower 

than fan 6 sentences with a color fan of four, or a place fan 

of four.  Additional human testing is required to gather more 

information about the effects of fan distribution.  But it is 

noteworthy that such hierarchical effects could be naturally 

afforded by structural aspects of a DSHM architecture.  This 

line of research is on-going.  

Appendix 

Relationship To the Two Term Model 

Rutledge-Taylor and West (2008) presented a model of the 

fan effect, as described in Anderson (1974).  This model 

provided a good match to the human data, but used a 

different mechanism for calculating recognition accuracy 

and reaction time values, than the one presented here. This 

mechanism, which we will refer to as the ‘retrieval’ 
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mechanism operates as described below.   

Whether DSHM recognizes a sentence, or not, according 

to the retrieval mechanism is based on how strongly the 

words in the sentence are associated with one another.

Specifically, if at least one of the words in the sentence 

(referred to as a target word) can be recovered using the 

other words in the sentence as cues, the sentence as a whole 

is recognized (as true), otherwise, it is not. 

If the sentence is recognized, the reaction time is based on 

strengths (e.g., confidence values) of the recovered target 

words, which are high on average, resulting in low reaction 

times.  If the sentence is not recognized, the reaction time is 

based on strengths of the words that were retrieved (but did 

not match the target words).  On average the strengths of 

these retrieved words are lower, resulting in higher reaction 

times. Additionally, the fans of the words in the sentences 

affect the strengths of the retrieved words and it these 

strengths that are the basis for the fan effect in the DSHM 

model. 

Using The Retrieval Mechanism In The Three 

Term Model 

The retrieval mechanism for generating recognition and 

accuracy results for the DSHM model was initially tested on 

the current stimuli and without using background 

knowledge sentences, which are not necessary for this 

mechanism.  The retrieval mechanism produced a 100% 

accuracy rate for identifying true sentences, but only a 36% 

accuracy rate for rejecting false sentences. 

The retrieval mechanism produced a very good fit to the 

human true correct reaction times, including the 

characteristic exponential curve observed in the human data 

(for both trues and falses).  However, the model results for 

false correct (i.e., correct rejections) reaction times were 

drastically different from that of the human data.  See figure 

4.

Figure 4: Reaction times (ms/char) using the retrieval 

mechanism 

The explanation for the model’s false correct data has to do

with the number of true near neighbors the false sentences 

have.  Here, ‘near neighbors’ are defined as two sentences 

that differ only by a single word.  The number of near true 

neighbors a false sentence has is correlated with its fan.  

This is the result of the counter-balancing of true and false 

sentences.  The existence of near neighbors makes little 

difference in the recognition results for false fan 3, 6 and 9 

sentences.  However, for fan 12 sentences there are true near 

neighbors that are retrieved (for each target word) with very 

high strengths.  This results in low reaction times for false 

sentences with a fan of 12. For example, when presented 

with the false sentence “the black mug is in the garage”, the 

true sentence “the grey much is in the garage” is retrieved 

with a high confidence value, when internally testing to see 

if “[?x:mug:garage]” retrieves ‘black’ as a candidate 

completion of the query term ‘?x’.

Due to the failure of the retrieval mechanism to provide a 

satisfactory account of the reaction times for correct 

rejections, the new mechanism described above was 

developed.  It is the authors’ belief that the retrieval 

mechanism ought to work for most DSHM models under 

most circumstances.  However, in cases such as the one 

presented here, the new mechanism can be applied in order 

to generate recognition reaction times for correct rejections 

that are resistant to the effects of true near neighbors.  
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